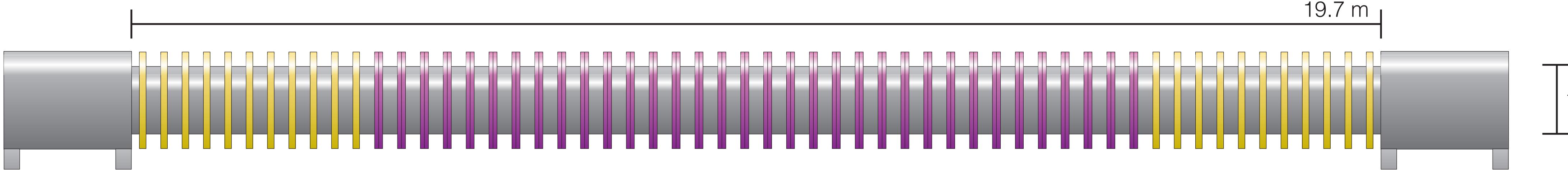


Upgrading LAPD diagnostic pipelines for training generative ML models

Phil Travis (phil@physics.ucla.edu), Steve Vincena
UCLA Basic Plasma Science Facility

Office of
Science



The Large Plasma Device (LAPD)

- 19.7m long, 1m diameter
- $T_e \sim 5-10$ eV
- n_e up to $\sim 10^{13}$ cm $^{-3}$
- 1 Hz shot rate – up to 31 million shots per year
- Hundreds of diagnostics ports
- **Data-rich environment**

1 LAPD data sources

Fixed diagnostics

- Interferometers (x1)
- Visible light diodes (x3)
- Fast framing camera

Probe diagnostics (mobile)

- Langmuir probes
- Ion saturation current
- Floating potential
- Langmuir sweeps (T_e)
- Hairpin resonator density measurements
- Magnetic fluctuations

Machine state information (MSI)

- Discharge current
- Discharge voltage
- Gas pressure
- RGA partial pressures
- Axial magnetic field

This work

- Digitization of MSI and fixed diagnostics
- Creation of auxiliary data pipeline
- Preliminary analysis of MSI
- **Training of energy-based model on MSI and fixed diagnostics**

Recorded MSI + permanent diagnostics

2 Preliminary analysis: long-timescale trends observed

Flattop discharge current and interferometer measurements

Changes in discharge current likely in-part caused by probe positions
 • Current assumption: plasmas do not change significantly shot-to-shot
May be able to relax this assumption using ML

3 Introduction to energy based models (EBMs)

$p(x) \sim e^{-\beta E(x)}$

Data \rightarrow E \rightarrow EBM

• Assigns an energy value to configurations of input variables — generative
 • Trained by pushing energy down on data, up on samples (contrastive divergence)
 • Learns the relationship between all input variables – predict anything from anything
 • Conditional sampling is easy
 • Solution to inverse problems are built-in
 • Can fill in missing data
 • Energies are additive: can easily combine models

High-variance plasma modeling

• Discharge signals may contain information that is difficult to exploit
 • In a high-variance (learned) approach:
 • All effects accounted for in prediction
 • Model has few preconceived notions
 • Learning patterns permits automated exploration

4 Training and sampling from an EBM

Training specifications

- 130756 shots (training set)
 - Downsampled from 25 kHz to 8.33 kHz
- Convolutional + dense nets
- 2,068,497 parameters

Free-sampled discharges

Diode 1 signal (Volts)

Example: reconstructing diode signal
(from validation dataset)

Real - sampled

Summary

- Data pipeline was constructed for machine state information (MSI) and fixed diagnostics (an interferometer and diodes)
- Preliminary data exploration undertaken: long-term trends observed in plasma discharge parameters
- Energy-based models (EBMs) learn a probability distribution by assigning an energy value to each input configuration
- EBMs can be freely sampled to generate synthetic discharges
- EBMs can be conditionally sampled to fill in missing signals

Future work

- Integrate more diagnostics into pipeline: interferometers (x3-7), visible light diodes (x3-6), a magnetic pickup coil, permanent Langmuir probes, spectrometers (x1-3), a spectral line ratio diagnostic
- Include probe diagnostics in training
- Uncover trends by sampling conditionally from energy-based models
 - Characterize new plasma source
 - Infer density profiles from a few shots or less