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Missing data reconstruction

Upgrading LAPD diagnostic pipelines for training generative ML models

LAPD data sources

High-variance plasma modeling

Introduction to energy based
models (EBMs)

Training and sampling from an EBM

Summary Future work

19.7 m

1.0 m

Fixed diagnostics
• Interferometers (x1)
• Visible light diodes (x3)
• Fast framing camera

Machine state information (MSI)
• Discharge current
• Discharge voltage
• Gas pressure
• RGA partial pressures
• Axial magnetic field

This work
• Digitization of MSI and fixed diagnostics
• Creation of auxiliary data pipeline
• Preliminary analysis of MSI
• Training of energy-based model on MSI
and fixed diagnostics

• Discharge signals may contain information
that is difficult to exploit

• In a high-variance (learned) approach:
• All effects accounted for in prediction
• Model has few preconceived notions

• Learning patterns permits automated
exploration

• Assigns an energy value to configurations
of input variables — generative

• Trained by pushing energy down on data,
up on samples (contrastive divergence)

• Learns the relationship between all input
variables – predict anything from anything
• Conditional sampling is easy
• Solution to inverse problems are built-in
• Can fill in missing data

• Energies are additive: can easily
combine models

Training specifications
• 130756 shots (training set)
• Downsampled from 25 kHz to 8.33 kHz

• Convolutional + dense nets
• 2,068,497 parameters

• Trained using contrastive divergence
• Based on methodology outlined in:
Du & Mordatch (2020) arXiv:1903.08689v6
Du et al. (2021) arXiv:2012.01316v4

Preliminary analysis: long-timescale trends observedThe Large Plasma Device (LAPD)

• 19.7m long, 1m diameter
• Te ~ 5-10 eV
• nₑ up to ~10¹³ cm⁻³
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• 1 Hz shot rate – up to 31 million shots per
year

• Hundreds of diagnostics ports
• Data-rich environment

• Changes in discharge current likely
in-part caused by probe positions

• Current assumption: plasmas do not
change significantly shot-to-shot
• May be able to relax this
assumption using ML
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• Data pipeline was constructed for machine
state information (MSI) and fixed
diagnostics (an interferometer and diodes)

• Preliminary data exploration undertaken:
long-term trends observed in plasma
discharge parameters

• Energy-based models (EBMs) learn a
probability distribution by assigning an
energy value to each input configuration

• EBMs can be freely sampled to generate
synthetic discharges

• EBMs can be conditionally sampled to fill in
missing signals

• Integrate more diagnostics into pipeline:
interferometers (x3-7), visible light diodes
(x3-6), a magnetic pickup coil, permanent
Langmuir probes, spectrometers (x1-3), a
spectral line ratio diagnostic

• Include probe diagnostics in training
• Uncover trends by sampling conditionally
from energy-based models
• Characterize new plasma source
• Infer density profiles from a few shots
or less

Probe diagnostics (mobile)
• Langmuir probes
• Ion saturation current
• Floating potential
• Langmuir sweeps (Te)

• Hairpin resonator density measurements
• Magnetic fluctuations
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Free-sampled discharges

• Sample from models: Langevin dynamics

• Conditionally sample: fill in missing data

Example: reconstructing diode signal
(from validation dataset)
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ẍ = �rE(x) +
p

TN (0, 1)

Gaussian processEnergy surface

Missing signal Existing signals

<latexit sha1_base64="NHxJ+5OI0Wpc3NiaEQyUOTa+u7U=">AAAB/XicbZDLSgMxFIYzXmu9jZedm2Ar1E2ZKaIui25cVrAXaIeSyWTa0CQzJBlxHIqv4saFIm59D3e+jWk7C239IfDxn3M4J78fM6q043xbS8srq2vrhY3i5tb2zq69t99SUSIxaeKIRbLjI0UYFaSpqWakE0uCuM9I2x9dT+rteyIVjcSdTmPicTQQNKQYaWP17cNyCnuKchhXDHAawIfTct8uOVVnKrgIbg4lkKvRt796QYQTToTGDCnVdZ1YexmSmmJGxsVeokiM8AgNSNegQJwoL5teP4YnxglgGEnzhIZT9/dEhrhSKfdNJ0d6qOZrE/O/WjfR4aWXUREnmgg8WxQmDOoITqKAAZUEa5YaQFhScyvEQyQR1iawognBnf/yIrRqVfe8enZbK9Wv8jgK4AgcgwpwwQWogxvQAE2AwSN4Bq/gzXqyXqx362PWumTlMwfgj6zPHwQPk6g=</latexit>

y ⇠ p(y | x)


