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19.7 m

The Large Plasma Device (LAPD)

* 19.7m long, 1m diameter
* T ~5-10€eV
*n_upto~10"cm™

O

Fixed diagnostics
- Interferometers (x1)
- Visible light diodes (x3)

* 1 Hz shot rate — up to 31 million shots per

year

- Hundreds of diagnostics ports

 Data-rich environment

LAPD data sources

Recorded MSI + permanent diagnostics

— #10500

#102500

Preliminary analysis: long-timescale trends observed

Flattop discharge current and interferometer measurements

Discharge current (Amps)

- Changes in discharge current likely
In-part caused by probe positions
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Training and sampling from an EBM

Training specifications
« 130756 shots (training set)
* Downsampled from 25 kHz to 8.33 kHz
« Convolutional + dense nets
« 2,068,497 parameters

Free-sampled discharges
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 Trained using contrastive divergence

« Based on methodology outlined In:
Du & Mordatch (2020) arXiv:1903.08689v6
Du et al. (2021) arXiv:2012.01316v4

- Sample from models: Langevin dynamics
i =—-VE(z)++/TN(0,1)
T T

Energy surface Gaussian process

 Conditionally sample: fill in missing data

y~ply|x)
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Missing signal Existing signals

Example: reconstructing diode signal
(from validation dataset)

Diode 1 signal (Volts)
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 Hairpin resonator density measurements

- Magnetic fluctuations
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Introduction to energy based
models (EBMs)

- All effects accounted for in prediction

- Model has few preconceived notions

Discrepancy

+ Learning patterns permits automated
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- RGA partial pressures
- Axial magnetic field

This work

- Digitization of MSI and fixed diagnostics
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* Trained by pushing energy down on data,
up on samples (contrastive divergence)

» Learns the relationship between all input
variables — predict anything from anything

« Conditional sampling is easy

modeling

long-term trends observed in plasma
discharge parameters

- Energy-based models (EBMs) learn a
probability distribution by assigning an
energy value to each input configuration

spectral line ratio diagnostic
* Include probe diagnostics in training

* Uncover trends by sampling conditionally
from energy-based models

- Characterize new plasma source
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- Training of energy-based model on MSI

and fixed diagnostics

* Energies are additive: can easily
combine models

missing signals
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